Корреляционное отношение Пирсона η

Все рассмотренные выше коэффициенты корреляции служат для выявления только линейной зависимости между признаками. Для измерения нелинейной зависимости К. Пирсон предложил показатель, который он назвал корреляционным отношением. Напомним, что коэффициент корреляции rxy(формула 11.1), который был введен Пирсоном, характеризует связь между переменными Х и Y с точки зрения прямой или обратной пропорциональности, иными словами, получаемая связь между переменными является согласованной и такой, что с увеличением одной переменной другая (в среднем) либо только увеличивается, либо только уменьшается (в среднем). При этом в первом случае получается положительный коэффициент корреляции, во втором отрицательный. www.talkbanks.ru

Корреляционное отношение описывает искомую связь, условно говоря, с двух сторон: со стороны переменной Х по отношению к Y, и со стороны переменной Y по отношению к X. Соответственно этому корреляционное отношение представляет собой два показателя, обозначаемые как hyx и hxy. Они вычисляются отдельно друг от друга. Однако они связаны между собой, поскольку при строго линейной зависимости между переменными Х и Y имеет место равенство hyx = hxy В этом случае величины обоих показателей корреляционного отношения совпадают с величиной коэффициента корреляции Пирсона.

Показатели корреляционного отношения вычисляются по следующим двум формулам:

(формула 10.1)

(формула 10.2)

здесь х и у общие, а хy и уx — групповые средние арифметические, fy и fx частоты рядов X и Y. Согласно этим формулам оба показателя всегда положительны и располагаются в интервале от 0 до +1.

Подчеркнем, что, как правило, hyx ≠ hxy. Равенство между этими коэффициентами возможно лишь при наличии строго линейной связи между коррелируемыми переменными. Именно поэтому различие между hyx и hxy убудет означать наличие не линейной, а связи более сложного типа между коррелируемыми признаками.

Для вычисления корреляционного соотношения hyx (Y по X) или hxy (X по Y) необходимо выполнить следующие действия:

1) расположить по порядку исходные данные по Х от меньшей величины к большей, при этом сохранив значения соответствующих величин У по отношению к Х;

2) определить частоты переменной Х — обозначение fx;

3) подсчитать арифметические (частные) средние по переменной Y для соответствующей частоты fx — обозначение уx ;

4) найти варианты (неповторяющиеся значения) величины Х — обозначение хi;

5) расположить по порядку исходные данные по Y от меньшей величины к большей, при этом сохранив значения соответствующих величин Х по отношению к Y;

6) определить частоты переменной Y— обозначение fy;

7) подсчитать арифметические (частные) средние по переменной Х для соответствующей частоты fy — обозначение хy;

8) найти варианты (неповторяющиеся значения) переменной Y — обозначение yi;

9) определить общие средние по переменной Х и Y обозначение x и у ;

10) произвести расчет по формулам (10.1) и (10.2);

11) определить уровень значимости полученных показателей корреляционного отношения но таблице критических значений для t-критерия Стьюдента при k = n — 2.

Разумеется, корреляционное отношение Пирсона не дает возможности установить характер выявленной зависимости — она может быть параболической, кубической, логарифмической и др. Из результатов анализа ясно только одно: связь между переменными Х и Y носит нелинейный характер. Более точно характер связи можно определить с помощью метода регрессионного анализа.

Для применения корреляционного отношения Пирсона необходимо соблюдать следующие условия:

1. Сравниваемые переменные должны быть измерены в шкале интервалов или отношений.

2. Предполагается, что обе переменные имеют нормальный закон распределения.

3. Число варьирующих признаков в сравниваемых переменных Х и У должно быть одинаковым.

4. Для оценки уровня достоверности корреляционного отношения Пирсона следует пользоваться формулой (5) и таблицей критических значений для t-критерия Стьюдента при k = n — 2.


Проблема личности в социальной психологии: социализация, социальная установка, проблемы личности и группы
Социальная психология, пользуясь определением Л-и, которое дает общая психология, выясняет, каким образом, т.е. в каких группах. Л., с одной стороны усваивает социальные влияния, а, с другой стороны, каким образом, в каких конкретных группах она реализует свою социальную сущность (через какие конкретные виды совместной Д-ти). Социальная ...

Клинические модели, групповое консультирование и группы психологического самопонимания. Основные клинические модели работы с группой
Групповая психоаналитическая терапия. В основе ее — психоаналитическая традиция работы с группой. Группа состоит из 8 — 10 человек в возрасте от 18 до 60 лет. Взаимодействие осуществляется на основе обсуждения и интерпретации неосознанных процессов. Группа осуществляет «контроль» относительно свободных ассоциации, сопротивление интерпре ...

Бергер П., Лукман Т. Социальное конструирование реальности ( I глава)
(Berger, P. L., Luckmann, T. The Social Construction of Reality.A Treatise on sociology of Knowledge. 1966) Содержание Введение: Проблема социологии знания I. Основы знания повседневной жизни 1. Реальность повседневной жизни 2. Социальное взаимодействие в повседневной жизни 3. Язык и знание в повседневной жизни ...