Частная корреляция

Название «частная корреляция» был впервые использовано в работе Д. Юла в 1907. Смысл этого понятия иллюстрирует следующий пример. Предположим, что при обработке некоторых данных удалось обнаружить значимую отрицательную корреляцию между длиной волос и ростом (т.е. люди низкого роста обладают более длинными волосами). На первый взгляд это может показаться странным: однако, если включить в расчет еще один признак — переменную «пол» и использовать не линейную, а частную корреляцию, то результат получит закономерное объяснение. поскольку женщины в среднем имеют более длинные волосы, чем мужчины, а их рост в среднем ниже, чем у мужчин. После учета переменной «пол» частная корреляция между длиной волос и ростом может оказаться близкой к единице. Иными словами, если одна величина коррелирует с другой, то это может быть отражением того факта, что они обе коррелируют с третьей величиной или с совокупностью величин. www.manytransport.ru

Если известна линейная связь между парами переменных X, Y и Z., то можно подсчитать частные коэффициенты корреляции, показывающие линейную корреляционную зависимость между двумя переменными при постоянной величине третьей переменной. Для определения частного коэффициента корреляции между переменными X и Y при постоянной величине переменной Z, используют формулу:

(формула 12.1)

Заключение (z) в скобки означает, что влияние переменной z па корреляцию между Х и Y постоянно. В том случае, если бы влияния переменной Z не было бы совсем, мы бы получили обычный коэффициент корреляции Пирсона между переменными Х и У.

Аналогично строят частые корреляционные зависимости между Х и Z (при постоянной Y) и Y и Z. (при постоянной Х).

(формула 12.2)

Значимость частного коэффициента корреляции оценивают по величине Тф, подсчитанной по формуле (5) для t-критерия Стьюдента с числом степеней свободы k = n - 2.

Для применения частного коэффициента корреляции необходимо соблюдать следующие условия:

1. Сравниваемые переменные должны быть измерены в шкале интервалов или отношений.

2. Предполагается, что все переменные имеют нормальный закон распределения.

3. Число варьирующих признаков в сравниваемых переменных должно быть одинаковым.

4. Для оценки уровня достоверности корреляционного отношения Пирсона следует пользоваться формулой (11.9) и таблицей критических значений для t-критерия Стьюдента с числом степеней свободы k = n - 2. (5).


Обработка результатов
В ходе обработки результатов необходимо: 1. Отмерить время, затраченное испытуемым на выполнение трех серий исследования. 2. Установить время переключаемости внимания. Время переключения внимания подсчитывается как разность времени между третьей серией и первой со второй вместе взятых. Показатель времени переключения "Т" под ...

Психологическая структура школьного класса
В психологии малой группы принято выделять две основные структуры отношений в коллективе: формальную (официальную) и неформальную (неофициальную). Формальная структура представляет собой соотношение позиций членов группы друг относительно друга, заданное извне, не зависящее от членов данной конкретной группы и примерно одинаковое для вс ...

Выводы
1. Профессиональное самоопределение является длительным процессом, состоящим из нескольких этапов и имеющим разветвленную структуру. В процессе профессиональной переориентации безработный сознательно определяет личностные приоритеты в смысле выбора профессиональных ориентиров и реализует их в совместной деятельности путем усвоения специ ...